Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference57 articles.
1. Abdelaal A, Elkatatny S, Abdulraheem A (2022) Real-time prediction of formation pressure gradient while drilling. Sci Rep 12(1):11318. https://doi.org/10.11038/s41598-11022-15493-z
2. Abidin MH (2014) Pore pressure estimation using artificial neural network. In: Geoscience and petroleum engineering. Universiti Teknologi PETRONAS, Perak, Malaysia. http://utpedia.utp.edu.my/id/eprint/14317. Accessed May 2014
3. Adim A, Riahi MA, Bagheri M (2018) Estimation of pore pressure by Eaton and Bowers methods using seismic and well survey data. J Appl Geophys Res 4(2):267–275. https://doi.org/10.22044/JRAG.22018.26360.21167
4. Ahmed A, Elkatatny S, Ali A, Mahmoud M, Abdulraheem A (2019) New model for pore pressure prediction while drilling using artificial neural networks. Arab J Sci Eng 44(6):6079–6088. https://doi.org/10.1007/s13369-13018-13574-13367
5. Aliouane L, Amar B (2015) Pore Pressure prediction in shale gas reservoirs using neural network and fuzzy logic with an application to Barnett Shale. In: EGU General Assembly. Austria. https://ui.adsabs.harvard.edu/abs/2015EGUGA..17.2723A
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献