Simulating wastewater treatment plants for heavy metals using machine learning models
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Link
https://link.springer.com/content/pdf/10.1007/s12517-022-10736-9.pdf
Reference52 articles.
1. Anmala J, Turuganti V (2021) Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed. Water Environ Res 93(11):2360–2373
2. Ansari M, Othman F, Abunama T, El-Shafie A (2018) Analysing the accuracy of machine learning techniques to develop an integrated influent time series model: case study of a sewage treatment plant, Malaysia. Environ Sci Pollut Res 25(12):12139–12149
3. Acquah HD (2010) Comparison of Akaike information criteria (AIC) and Bayesian information criteria (BIC) in selection of asymmetric price relationships. J Dev Agric Econ 2(1):001–006
4. Bagherzadeh F, Mehrani MJ, Basirifard M, Roostaei J (2021) Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance. J Water Process Eng 41:102033
5. Barzegar R, Moghaddam AA, Adamowski J, Ozga-Zielinski B (2018) Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model. Stoch Environ Res Risk Assess 32(3):799–813
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Artificial intelligence and machine learning algorithms in the detection of heavy metals in water and wastewater: Methodological and ethical challenges;Chemosphere;2024-04
2. A hybrid deep learning approach to improve real-time effluent quality prediction in wastewater treatment plant;Water Research;2024-02
3. Predicting biochemical oxygen demand in wastewater treatment plant using advance extreme learning machine optimized by Bat algorithm;Heliyon;2023-11
4. An Analysis of The Small Sample Datasets Based on Machine Learning;Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering;2022-10-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3