Attenuation relationships of peak ground motions in the Jazan Region

Author:

Abdelfattah Ali K.,Al-amri Abdullah,Abdelrahman Kamal,Fnais Muhamed,Qaysi Saleh

Abstract

AbstractIn this study, attenuation relationships are proposed to more accurately predict ground motions in the southernmost part of the Arabian Shield in the Jazan Region of Saudi Arabia. A data set composed of 72 earthquakes, with normal to strike-slip focal mechanisms over a local magnitude range of 2.0–5.1 and a distance range of 5–200 km, was used to investigate the predictive attenuation relationship of the peak ground motion as a function of the hypocentral distance and local magnitude. To obtain the space parameters of the empirical relationships, non-linear regression was performed over a hypocentral distance range of 4–200 km. The means of 638 peak ground acceleration (PGA) and peak ground velocity (PGV) values calculated from the records of the horizontal components were used to derive the predictive relationships of the earthquake ground motions. The relationships accounted for the site-correlation coefficient but not for the earthquake source implications. The derived predictive attenuation relationships for PGV and PGA are$$ {\log}_{10}(PGV)=-1.05+0.65\cdotp {M}_L-0.66\cdotp {\log}_{10}(r)-0.04\cdotp r, $$ log 10 PGV = 1.05 + 0.65 · M L 0.66 · log 10 r 0.04 · r , $$ {\log}_{10}(PGA)=-1.36+0.85\cdotp {M}_L-0.85\cdotp {\log}_{10}(r)-0.005\cdotp r, $$ log 10 PGA = 1.36 + 0.85 · M L 0.85 · log 10 r 0.005 · r , respectively. These new relationships were compared to the grand-motion prediction equation published for western Saudi Arabia and indicate good agreement with the only data set of observed ground motions available for an ML 4.9 earthquake that occurred in 2014 in southwestern Saudi Arabia, implying that the developed relationship can be used to generate earthquake shaking maps within a few minutes of the event based on prior information on magnitudes and hypocentral distances taking into considerations the local site characteristics.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3