Author:
Abdelfattah Ali K.,Al-amri Abdullah,Abdelrahman Kamal,Fnais Muhamed,Qaysi Saleh
Abstract
AbstractIn this study, attenuation relationships are proposed to more accurately predict ground motions in the southernmost part of the Arabian Shield in the Jazan Region of Saudi Arabia. A data set composed of 72 earthquakes, with normal to strike-slip focal mechanisms over a local magnitude range of 2.0–5.1 and a distance range of 5–200 km, was used to investigate the predictive attenuation relationship of the peak ground motion as a function of the hypocentral distance and local magnitude. To obtain the space parameters of the empirical relationships, non-linear regression was performed over a hypocentral distance range of 4–200 km. The means of 638 peak ground acceleration (PGA) and peak ground velocity (PGV) values calculated from the records of the horizontal components were used to derive the predictive relationships of the earthquake ground motions. The relationships accounted for the site-correlation coefficient but not for the earthquake source implications. The derived predictive attenuation relationships for PGV and PGA are$$ {\log}_{10}(PGV)=-1.05+0.65\cdotp {M}_L-0.66\cdotp {\log}_{10}(r)-0.04\cdotp r, $$
log
10
PGV
=
−
1.05
+
0.65
·
M
L
−
0.66
·
log
10
r
−
0.04
·
r
,
$$ {\log}_{10}(PGA)=-1.36+0.85\cdotp {M}_L-0.85\cdotp {\log}_{10}(r)-0.005\cdotp r, $$
log
10
PGA
=
−
1.36
+
0.85
·
M
L
−
0.85
·
log
10
r
−
0.005
·
r
,
respectively. These new relationships were compared to the grand-motion prediction equation published for western Saudi Arabia and indicate good agreement with the only data set of observed ground motions available for an ML 4.9 earthquake that occurred in 2014 in southwestern Saudi Arabia, implying that the developed relationship can be used to generate earthquake shaking maps within a few minutes of the event based on prior information on magnitudes and hypocentral distances taking into considerations the local site characteristics.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献