Groundwater exploration using drainage pattern and geophysical data: a case study from Wadi Qena, Egypt

Author:

Alkholy ArwaORCID,Saleh Ahmed,Ghazala Hosni,Al Deep Mohamed,Mekkawi Mahmoud

Abstract

Abstract In the Wadi Qena region, the digital elevation model (DEM), aeromagnetic, and magnetotelluric data are processed and examined to outline surface water flow patterns, the subsurface structures, demonstrate their effects on the groundwater flow direction, and assess the groundwater aquifer thickness and the relationship between subsurface structures and the inherited surface water flow (drainage pattern). Wadi Qena’s drainage pattern and watershed basins were delineated using satellite digital elevation data in order to accomplish these objectives. The first vertical derivative transformation was used and examined to determine the prevailing northwest-southeast and northeast-southwest structural trends impacting the region. In order to handle aeromagnetic data, it is necessary first to reduce the observed magnetic data such that they correspond to the reduced magnetic pole (RTP). The two-dimensional analytical signal technique was used to discover that the depth of the basement rocks, which in the research region serve as the bedrock of the overlying groundwater aquifer, ranges from 101 to − 1165 m relative to sea level. This information was obtained by measuring the distance from the earth’s surface to the bedrock. To further define the accurate subsurface geological model in the region, the conducted magnetotelluric survey in the area was interpreted using the 1-D inversion technique, and the results were coupled with the existing drill data. The base of the groundwater aquifer was discovered to be between 350 and 410 m deep. Finally, the results are reliable and closely related to earlier geological and geophysical investigations in the studied area.

Funder

Science and Technology Development Fund

The National Research Institute of Astronomy and Geophysics

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3