The use of sodium chloride as strategy for improving CO2/CH4 replacement in natural gas hydrates promoted with depressurization methods

Author:

Gambelli Alberto MariaORCID,Rossi FedericoORCID

Abstract

AbstractNatural gas hydrates represent a valid opportunity in terms of energy supplying, carbon dioxide permanent storage and climate change contrast. Research is more and more involved in performing CO2 replacement competitive strategies. In this context, the inhibitor effect of sodium chloride on hydrate formation and stability needs to be investigated in depth. The present work analyses how NaCl intervenes on CO2 hydrate formation, comparing results with the same typology of tests carried out with methane, in order to highlight the influence that salt produced on hydrate equilibrium conditions and possibilities which arise from here for improving the replacement process efficiency. Sodium chloride influence was then tested on five CO2/CH4 replacement tests, carried out via depressurization. In relation with the same typology of tests, realised in pure demineralised water and available elsewhere in literature, three main differences were found. Before the replacement phase, CH4 hydrate formation was particularly contained; moles of methane involved were in the range 0.059–0.103 mol. On the contrary, carbon dioxide moles entrapped into water cages were 0.085–0.206 mol or a significantly higher quantity. That may be justified by the greater presence of space and free water due to the lower CH4 hydrate formation, which led to a more massive new hydrate structure formation. Moreover, only a small part of methane moles remained entrapped into hydrates after the replacement phase (in the range of 0.023–0.042 mol), proving that, in presence of sodium chloride, CO2/CH4 exchange interested the greater part of hydrates. Thus, the possibility to conclude that sodium chloride presence during the CO2 replacement process provided positive and encouraging results in terms of methane recovery, carbon dioxide permanent storage and, consequently, replacement process efficiency.

Funder

Università degli Studi di Perugia

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3