Rainfall-runoff modeling for the Hoshangabad Basin of Narmada River using artificial neural network
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Link
https://link.springer.com/content/pdf/10.1007/s12517-020-05930-6.pdf
Reference49 articles.
1. Aichouri I, Hani A, Bougherira N, Djabri L, Chaffai H, Lallahem S (2015) River flow model using artificial neural networks. Energy Procedia 74:1007–1014. https://doi.org/10.1016/j.egypro.2015.07.832
2. Behzad M, Asghari K, Eazi M, Palhang M (2009) Generalization performance of support vector machines and neural networks in runoff modeling. Expert Syst Appl 36:7624–7629. https://doi.org/10.1016/j.eswa.2008.09.053
3. Bhadra A, Bandyopadhyay A, Singh R, Raghuwanshi NS (2010) Rainfall-runoff modeling: comparison of two approaches with different data requirements. Water Resour Manag 24:37–62. https://doi.org/10.1007/s11269-009-9436-z
4. Broomhead D, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355
5. Chandwani V, Vyas SK, Agrawal V, Sharma G (2015) Soft computing approach for rainfall-runoff modelling: a review. Aquat Procedia 4:1054–1061. https://doi.org/10.1016/j.aqpro.2015.02.133
Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction of inlet-to-outlet width ratio of type-A piano key weir using fuzzy neural network (FNN);Journal of Water and Climate Change;2024-08-13
2. Performance evaluation of ML techniques in hydrologic studies: Comparing streamflow simulated by SWAT, GR4J, and state-of-the-art ML-based models;Journal of Earth System Science;2024-07-12
3. A multi-collaborative technique for assessing the reservoir sedimentation with futuristic capacity prediction using ANN model;Environmental Earth Sciences;2024-07
4. Performance evaluation of various hydrological models with respect to hydrological responses under climate change scenario: a review;Cogent Engineering;2024-06-03
5. Integrating conceptual and machine learning models to enhance daily-Scale streamflow simulation and assessing climate change impact in the watersheds of the Godavari basin, India;Environmental Research;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3