Abstract
Abstract
Remotely sensed data such as satellite photos and radar images can be used to produce geological maps on arid regions, where the vegetation coverage does not have a significant effect. In central Tunisia, the Jebel Meloussi area has unique geological features and characteristic morphology (i.e. flat areas with dune fields in contrast with hills of folded and eroded stratigraphic sequences), which makes it an ideal area for testing new methods of automatic terrain classification. For this, data from the Sentinel 2 satellite sensor and the SRTM-based MERIT DEM (digital elevation model) were used in the present study. Using R scripts and the random forest classification method, modelling was performed on four lithological variables—derived from the different bands of the Sentinel 2 images—and two morphometric parameters for the area of the 1:50,000 geological map sheet no. 103. The four lithological variables were chosen to highlight the iron-bearing minerals since the spectral parameters of the Sentinel 2 sensors are especially useful for this purpose. The training areas of the classification were selected on the geological map. The results of the modelling identified Eocene and Cretaceous evaporite-bearing sedimentary series (such as the Jebs and the Bouhedma Formations) with the highest producer accuracy (> 60% of the predicted pixels match with the map). The pyritic argillites of the Sidi Khalif Formation were also recognized with the same accuracy, and the Quaternary sebhkas and dunes were also well predicted. The study concludes that the classification-based geological map is useful for field geologist prior to field surveys.
Funder
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
Eötvös Loránd University
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献