Skip to main content
Log in

Two novel peptides derived from oat with inhibitory activity against dipeptidyl peptidase-IV: the related mechanism revealed by molecular docking and in vitro and in situ effects

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In recent years, the dipeptidyl peptidase IV (DPP-IV) inhibitors, an antidiabetic drug extending the half-life of incretin, have attracted the researchers’ attention. The current study aimed to explore the inhibitory peptides obtained from oat protein hydrolysates (OPHs) and their derivative peptides against DPP-IV. OPHs obtained by digestion with alcalase, papain, and trypsin exhibited DPP-IV inhibitory activities. Among them, the OPHs produced by digestion with alcalase exhibited the strongest inhibitory effects on DPP-IV (92.92 ± 0.13%). The inhibitory peptides obtained with alcalase digestion were isolated and purified using anion-exchange chromatography (DEAE-52) and volume-exclusion chromatography (Sephadex-G25) sequentially. Liquid chromatography-tandem mass spectrometry was used to identify 11 peptides in total. Molecular docking results showed that the SPVAEVPFLR (SP10, − 8.0 kcal/mol) and LDATDMVALVG (LD11, − 7.1 kcal/mol) had the lowest binding energies with DPP-IV and primarily bound by hydrogen bonds and hydrophobic interactions. Moreover, simulated digestion verified that SP10 and LD11 could resist gastrointestinal degradation. The inhibitory activities of SP10 and LD11 on DPP-IV were investigated in vitro using a monolayer intestinal model of Caco-2 cells. The results indicated that SP10 and LD11 had in situ IC50 values of 167.8 and 269.1 µM, respectively. Therefore, OPHs can be considered promising natural sources of DPP-IV inhibitory peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 8
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.E. Pratley, A. Salsali, Inhibition of DPP-4: a new therapeutic approach for the treatment of type 2 diabetes. Curr. Med. Res. Opin. 23(4), 919–931 (2007). https://doi.org/10.1185/030079906x162746

    Article  CAS  PubMed  Google Scholar 

  2. J.B. Cole, J.C. Florez, Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 16(7), 377–390 (2020). https://doi.org/10.1038/s41581-020-0278-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. D. Lovic, A. Piperidou, I. Zografou, H. Grassos, A. Pittaras, A. Manolis, The growing epidemic of diabetes Mellitus. Curr. Vasc Pharmacol. 18(2), 104–109 (2020). https://doi.org/10.2174/1570161117666190405165911

    Article  CAS  PubMed  Google Scholar 

  4. P. Patil, S. Mandal, S.K. Tomar, S. Anand, Food protein-derived bioactive peptides in management of type 2 diabetes. Eur. J. Nutr. 54(6), 863–880 (2015). https://doi.org/10.1007/s00394-015-0974-2

    Article  CAS  PubMed  Google Scholar 

  5. A.B. Nongonierma, C. Mazzocchi, S. Paolella, R.J. FitzGerald, Release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from milk protein isolate (MPI) during enzymatic hydrolysis. Food Res. Int. 94, 79–89 (2017). https://doi.org/10.1016/j.foodres.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  6. F.R. Xu, Y.J. Yao, X.Y. Xu, M. Wang, M.M. Pan, S.Y. Ji, J. Wu, D.L. Jiang, X.R. Ju, L.F. Wang, Identification and quantification of DPP-IV-Inhibitory peptides from Hydrolyzed-Rapeseed-Protein-Derived Napin with Analysis of the interactions between key residues and protein domains. J. Agr Food Chem. 67(13), 3679–3690 (2019). https://doi.org/10.1021/acs.jafc.9b01069

    Article  CAS  Google Scholar 

  7. I.M.E. Lacroix, E.C.Y. Li-Chan, Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation - current knowledge and future research considerations. Trends Food Sci Tech. 54, 1–16 (2016). https://doi.org/10.1016/j.tifs.2016.05.008

    Article  CAS  Google Scholar 

  8. A.B. Nongonierma, R.J. FitzGerald, Prospects for the management of type 2 diabetes using food protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Curr. Opin. Food Sci. 8, 19–24 (2016). https://doi.org/10.1016/j.cofs.2016.01.007

    Article  Google Scholar 

  9. H.X. You, Y. Zhang, T.L. Wu, J.R. Li, L.Y. Wang, Z.P. Yu, J.B. Liu, X.B. Liu, L. Ding, Identification of dipeptidyl peptidase IV inhibitory peptides from rapeseed proteins. LWT-Food Sci. Technol. 160, 113255 (2022). https://doi.org/10.1016/j.lwt.2022.113255

    Article  CAS  Google Scholar 

  10. I.M.E. Lacroix, E.C.Y. Li-Chan, Isolation and characterization of peptides with dipeptidyl peptidase-IV inhibitory activity from pepsin-treated bovine whey proteins. Peptides. 54, 39–48 (2014). https://doi.org/10.1016/j.peptides.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  11. F. Rivero-Pino, F.J. Espejo-Carpio, E.M. Guadix, Production and identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from discarded sardine pilchardus protein. Food Chem. 328, 127096 (2020). https://doi.org/10.1016/j.foodchem.2020.127096

    Article  CAS  PubMed  Google Scholar 

  12. M.M.L. Grundy, A. Fardet, S.M. Tosh, G.T. Rich, P.J. Wilde, Processing of oat: the impact on oat’s cholesterol lowering effect. Food Funct. 9(3), 1328–1343 (2018). https://doi.org/10.1039/c7fo02006f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. T.V. Nieto-Nieto, Y.X. Wang, L. Ozimek, L.Y. Chen, Inulin at low concentrations significantly improves the gelling properties of oat protein—a molecular mechanism study. Food Hydrocolloid 50, 116–127 (2015). https://doi.org/10.1016/j.foodhyd.2015.03.031

    Article  CAS  Google Scholar 

  14. A. Mohamed, G. Biresaw, J.Y. Xu, M.P. Hojilla-Evangelista, P. Rayas-Duarte, Oats protein isolate: thermal, rheological, surface and functional properties. Food Res. Int. 42(1), 107–114 (2009). https://doi.org/10.1016/j.foodres.2008.10.011

    Article  CAS  Google Scholar 

  15. N.P. Bityutskii, I. Loskutov, K. Yakkonen, A. Konarev, T. Shelenga, V. Khoreva, E. Blinova, A. Ryumin, Screening of Avena sativa cultivars for iron, zinc, manganese, protein and oil content and fatty acid composition in whole grains. Cereal Res. Commum 48(1), 87–94 (2019). https://doi.org/10.1007/s42976-019-00002-2

    Article  CAS  Google Scholar 

  16. S.R. Ma, M.L. Zhang, X.L. Bao, Y. Fu, Preparation of antioxidant peptides from oat globulin. CyTA-J. Food. 18(1), 108–115 (2020). https://doi.org/10.1080/19476337.2020.1716076

    Article  CAS  Google Scholar 

  17. F. Wang, Y.Y. Zhang, T.T. Yu, J.T. He, J. Cui, J.N. Wang, X.N. Cheng, J.F. Fan, Oat globulin peptides regulate antidiabetic drug targets and glucose transporters in Caco-2 cells. J. Funct. Foods. 42, 12–20 (2018). https://doi.org/10.1016/j.jff.2017.12.061

    Article  CAS  Google Scholar 

  18. G.Y. Yu, F. Wang, B.L. Zhang, J.F. Fan, In vitro inhibition of platelet aggregation by peptides derived from oat (Avena sativa L.), highland barley (Hordeum vulgare Linn. Var. Nudum hook. f.), and buckwheat (Fagopyrum esculentum Moench) proteins. Food Chem. 194, 577–586 (2016). https://doi.org/10.1016/j.foodchem.2015.08.058

    Article  CAS  PubMed  Google Scholar 

  19. H. Agrawal, R. Joshi, M. Gupta, Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chem. 204, 365–372 (2016). https://doi.org/10.1016/j.foodchem.2016.02.127

    Article  CAS  PubMed  Google Scholar 

  20. Y. Zhang, R. Chen, X.L. Chen, Z. Zeng, H.Q. Ma, S.W. Chen, Dipeptidyl peptidase IV-inhibitory peptides derived from silver carp (Hypophthalmichthys molitrix val.) proteins. J. Agr Food Chem. 64(4), 831–839 (2016). https://doi.org/10.1021/acs.jafc.5b05429

    Article  CAS  Google Scholar 

  21. J. Adler-Nissen, Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agr Food Chem. 27(6), 1256–1262 (1979). https://doi.org/10.1021/jf60226a042

    Article  CAS  Google Scholar 

  22. A.B. Nongonierma, M. Lalmahomed, S. Paolella, R.J. FitzGerald, Milk protein isolate (MPI) as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chem. 231, 202–211 (2017). https://doi.org/10.1016/j.foodchem.2017.03.123

    Article  CAS  PubMed  Google Scholar 

  23. W.Z. Zhao, D. Zhang, Z.P. Yu, L. Ding, J.B. Liu, Novel membrane peptidase inhibitory peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase IV identified from hen eggs. J. Funct. Foods. 64, 11 (2020). https://doi.org/10.1016/j.jff.2019.103649

    Article  CAS  Google Scholar 

  24. N.P. Möller, K.E. Scholz-Ahrens, N. Roos, J. Schrezenmeir, Bioactive peptides and proteins from foods: indication for health effects. Eur. J. Nutr. 47(4), 171–182 (2008). https://doi.org/10.1007/s00394-008-0710-2

    Article  CAS  PubMed  Google Scholar 

  25. F.R. Xu, E.G. de Mejia, H. Chen, K. Rebecca, M.M. Pan, R. He, Y.J. Yao, L.F. Wang, X.R. Ju, Assessment of the DPP-IV inhibitory activity of a novel octapeptide derived from rapeseed using Caco-2 cell monolayers and molecular docking analysis. J. Food Biochem. 44(10), 13 (2020). https://doi.org/10.1111/jfbc.13406

    Article  CAS  Google Scholar 

  26. T. Zhang, M. Su, X.X. Jiang, Y.Q. Xue, J.X. Zhang, X.Q. Zeng, Z. Wu, Y.X. Guo, D.D. Pan, Transepithelial transport route and liposome encapsulation of milk-derived ACE-inhibitory peptide Arg-Leu-Ser-Phe-Asn-Pro. J. Agric. Food Chem. 67(19), 5544–5551 (2019). https://doi.org/10.1021/acs.jafc.9b00397

    Article  CAS  PubMed  Google Scholar 

  27. F.R. Xu, L.F. Wang, X.R. Ju, J. Zhang, S. Yin, J.Y. Shi, R. He, Q. Yuan, Transepithelial transport of YWDHNNPQIR and its metabolic fate with cytoprotection against oxidative stress in human intestinal Caco-2 cells. J. Agric. Food Chem. 65(10), 2056–2065 (2017). https://doi.org/10.1021/acs.jafc.6b04731

    Article  CAS  PubMed  Google Scholar 

  28. R.T. Jin, J.Q. Shang, X.Y. Teng, L.G. Zhang, M.H. Liao, J.X. Kang, R. Meng, D.F. Wang, H.W. Ren, N. Liu, Characterization of DPP-IV inhibitory peptides using an in Vitro Cell Culture Model of the intestine. J. Agr Food Chem. 69(9), 2711–2718 (2021). https://doi.org/10.1021/acs.jafc.0c05880

    Article  CAS  Google Scholar 

  29. E. Nourmohammadi, A. SadeghiMahoonak, M. Alami, M. Ghorbani, Amino acid composition and antioxidative properties of hydrolysed pumpkin (Cucurbita pepo L.) oil cake protein. Int. J. Food Prop. 20(12), 3244–3255 (2017). https://doi.org/10.1080/10942912.2017.1283516

    Article  CAS  Google Scholar 

  30. X.Z. Kong, L.N. Zhang, W.G. Song, C.M. Zhang, Y.F. Hua, Y.M. Chen, X.F. Li, Separation, identification and molecular binding mechanism of dipeptidyl peptidase IV inhibitory peptides derived from walnut (Juglans regia L.) protein. Food Chem. 347, 129062 (2021). https://doi.org/10.1016/j.foodchem.2021.129062

    Article  CAS  PubMed  Google Scholar 

  31. A. Sila, O.M. Alvarez, A. Haddar, F. Frikha, P. Dhulster, N. Nedjar-Arroume, A. Bougatef, Purification, identification and structural modelling of DPP-IV inhibiting peptides from barbel protein hydrolysate. J. Chromatogr. B 1008, 260–269 (2016). https://doi.org/10.1016/j.jchromb.2015.11.054

    Article  CAS  Google Scholar 

  32. R. Liu, L. Zhou, Y. Zhang, N.J. Sheng, Z.K. Wang, T.Z. Wu, X.Z. Wang, H. Wu, Rapid identification of dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides from Ruditapes philippinarum hydrolysate. Molecules 22(10), 12 (2017). https://doi.org/10.3390/molecules22101714

    Article  CAS  Google Scholar 

  33. W. Wang, X.Q. Liu, Y.J. Li, H.X. You, Z.P. Yu, L.Y. Wang, X.B. Liu, L. Ding, Identification and characterization of dipeptidyl peptidase-IV inhibitory peptides from oat proteins. Foods 11(10), 11 (2022). https://doi.org/10.3390/foods11101406

    Article  CAS  Google Scholar 

  34. H. Hong, Y.Y. Zheng, S.J. Song, Y.Q. Zhang, C. Zhang, J. Liu, Y.K. Luo, Identification and characterization of DPP-IV inhibitory peptides from silver carp swim bladder hydrolysates. Food Biosci. 38, 100748 (2020). https://doi.org/10.1016/j.fbio.2020.100748

    Article  CAS  Google Scholar 

  35. O. Power, A.B. Nongonierma, P. Jakeman, R.J. FitzGerald, Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proc. Nutr. Soc. 73(1), 34–46 (2014). https://doi.org/10.1017/s0029665113003601

    Article  PubMed  Google Scholar 

  36. M. Nabeno, F. Akahoshi, H. Kishida, I. Miyaguchi, Y. Tanaka, S. Ishii, T. Kadowaki, A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem. Biophys. Res. Commun. 434(2), 191–196 (2013). https://doi.org/10.1016/j.bbrc.2013.03.010

    Article  CAS  PubMed  Google Scholar 

  37. X. Yu, X.H. Cai, S. Li, L.Y. Luo, J. Wang, M. Wang, L. Zeng, Studies on the interactions of theaflavin-3,3’-digallate with bovine serum albumin: multi-spectroscopic analysis and molecular docking. Food Chem. 366, 130422 (2022). https://doi.org/10.1016/j.foodchem.2021.130422

    Article  CAS  PubMed  Google Scholar 

  38. D.H. Utomo, N. Widodo, M. Rifa’i, Identifications small molecules inhibitor of p53-mortalin complex for cancer drug using virtual screening. Bioinformation. 8(9), 426–429 (2012). https://doi.org/10.6026/97320630008426

    Article  PubMed  PubMed Central  Google Scholar 

  39. M. Lang, Y.S. Song, Y. Li, X. Xiang, L. Ni, J.J. Miao, Purification, identification, and molecular mechanism of DPP-IV inhibitory peptides from defatted Antarctic krill powder. J. Food Biochem. 45(9), 8 (2021). https://doi.org/10.1111/jfbc.13872

    Article  CAS  Google Scholar 

  40. H.B. Rasmussen, S. Branner, F.C. Wiberg, N. Wagtmann, Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat. Struct. Biol. 10(1), 19–25 (2003). https://doi.org/10.1038/nsb882

    Article  CAS  PubMed  Google Scholar 

  41. K. Aertgeerts, S. Ye, M.G. Tennant, M.L. Kraus, J. Rogers, B.C. Sang, R.J. Skene, D.R. Webb, G.S. Prasad, Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci. 13(2), 412–421 (2004). https://doi.org/10.1110/ps.03460604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. H.X. You, T.L. Wu, W. Wang, Y.J. Li, X.B. Liu, L. Ding, Preparation and identification of dipeptidyl peptidase IV inhibitory peptides from quinoa protein. Food Res. Int. 156, 111176 (2022). https://doi.org/10.1016/j.foodres.2022.111176

    Article  CAS  PubMed  Google Scholar 

  43. J. Caron, D. Domenger, P. Dhulster, R. Ravallec, B. Cudennec, Using Caco-2 cells as novel identification tool for food-derived DPP-IV inhibitors. Food Res. Int. 92, 113–118 (2017). https://doi.org/10.1016/j.foodres.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  44. C.Y. Zhang, S. Gao, C. Zhang, Y.Q. Zhang, H.G. Liu, H. Hong, Y.K. Luo, Evaluating in vitro dipeptidyl peptidase IV inhibition by peptides from common carp (Cyprinus carpio) roe in cell culture models. Eur. Food Res. Technol. 246(1), 179–191 (2020). https://doi.org/10.1007/s00217-019-03399-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Planning Project of Sichuan Province (2022JDRC0039) and Aerospace Science and Technology Collaborative Innovation Center project (BSAUEA5740600223).

Author information

Authors and Affiliations

Authors

Contributions

Writing of original manuscripts: Xinxin Mu; Data curation: Xinxin Mu, Ying Ma; Runding access: Rongchun Wang; Monitoring: Rongchun Wang, Cuilin Cheng, Qiming Li; Validation: Ying Ma, Cuilin Cheng; Resources: Qiming Li, Rongchun Wang.

Corresponding author

Correspondence to Rongchun Wang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, X., Wang, R., Cheng, C. et al. Two novel peptides derived from oat with inhibitory activity against dipeptidyl peptidase-IV: the related mechanism revealed by molecular docking and in vitro and in situ effects. Food Measure (2024). https://doi.org/10.1007/s11694-024-02387-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02387-z

Keywords

Navigation