Abstract
AbstractAflatoxins are considered a severe hazard, contaminate dietary products, and cause malignant alterations in liver tissues. Fermented milk (FM) is prepared using probiotic lactic acid strains. This investigation aimed to produce an integrated milk beverage, inactivating aflatoxins toxicity and biotransformation. The proximate analysis of the investigated materials and biochemical parameter changes of the in-vivo experiment were determined. Results reflected the extract’s valuable content of polysaccharides and antioxidants. Nine phenolics were identified predominantly with catechin (39.67 ± 1.5 µg/g). FM-fortification is reflected by enhancement in protein (49.5 ± 2.97 g/Kg) and fiber content (1.78 ± 0.54 g/Kg) compared to the FM content. Relative rats’ weight gain improved to 34.29% for the fortified-FM group close to the control; it was recorded at 16.47% for the AFM1 group. Alkaline phosphatase in AFM1 rats was 99.2 ± 1.86 U/L and decreased to 44.2 ± 0.71 U/L in the fortified-FM group (44.2 ± 0.71 U/L) to be close to the control group. Aflatoxin M1 rats exposure reflects tissue alterations and cell damage, which recorded lesser in rats treated by extract and beverage administrations. The beverage’s corrective action relied on two integrated mechanisms, aflatoxin-binding to bacterial and bioactivity interaction of extract substances. This beverage stopped tissue alterations that occurred due to aflatoxins. The result supports the future production of fortified-milk beverages as a bio-shield against aflatoxin toxicity, besides their nutritional and functional properties.
Funder
National Research Centre Egypt
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality,General Chemical Engineering,Food Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献