Anomalous Z′ bosons for anomalous B decays

Author:

Davighi JoeORCID

Abstract

Abstract Motivated by the intriguing discrepancies in bsℓℓ transitions, the fermion mass problem, and a desire to preserve the accidental symmetries of the Standard Model (SM), we extend the SM by an anomalous U(1)X gauge symmetry where X = Y3 + a(Lμ− Lτ)/6. The heavy Z′ boson associated with spontaneously breaking U(1)X at the TeV scale mediates the bsℓℓ anomalies via $$ {\mathcal{O}}_9^{\mu}\sim \frac{1}{\Lambda^2}\left(\overline{s}{\gamma}_{\rho }{P}_Lb\right)\left(\overline{\mu}{\gamma}^{\rho}\mu \right) $$ O 9 μ ~ 1 Λ 2 s ¯ γ ρ P L b μ ¯ γ ρ μ . We show that this model, which features mixed gauge anomalies involving U(1)X and hypercharge, can be made anomaly-free for any a ∈ ℤ by integrating in a pair of charged fermions whose masses naturally reside somewhere between 1 and 30 TeV. The gauge symmetry permits only the third family Yukawas at the renormalisable level, and so the light quark masses and mixings are controlled by accidental U(2)3 flavour symmetries which we assume are minimally broken alongside U(1)X. The lepton sector is not governed by U(2) symmetries, but rather one expects a nearly diagonal charged lepton Yukawa with me,μ « mτ. The model does not explain the hierarchy me « mμ, but it does possess high quality lepton flavour symmetries that are robust to the heavy physics responsible for generating me,μ. We establish the viability of these models by checking agreement with the most important experimental constraints. We comment on how the model could also explain neutrino masses and the muon g − 2.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3