Abstract
Abstract
We investigate the link between quantum position-verification (QPV) and holography established in [1] using holographic quantum error correcting codes as toy models. By inserting the “temporal” scaling of the AdS metric by hand via the bulk Hamiltonian interaction strength, we recover a toy model with consistent causality structure. This leads to an interesting implication between two topics in quantum information: if position-based verification is secure against attacks with small entanglement then there are new fundamental lower bounds for resources required for one Hamiltonian to simulate another.
Publisher
Springer Science and Business Media LLC