From large to small $$ \mathcal{N} $$ = (4, 4) superconformal surface defects in holographic 6d SCFTs

Author:

Capuozzo PietroORCID,Estes JohnORCID,Robinson BrandonORCID,Suzzoni BenjaminORCID

Abstract

Abstract Two-dimensional (2d) $$ \mathcal{N} $$ N = (4, 4) Lie superalgebras can be either “small” or “large”, meaning their R-symmetry is either $$ \mathfrak{so} $$ so (4) or $$ \mathfrak{so} $$ so (4) ⊕ $$ \mathfrak{so} $$ so (4), respectively. Both cases admit a superconformal extension and fit into the one-parameter family $$ \mathfrak{d} $$ d (2, 1; γ) ⊕ $$ \mathfrak{d} $$ d (2, 1; γ), with parameter γ ∈ (−∞, ∞). The large algebra corresponds to generic values of γ, while the small case corresponds to a degeneration limit with γ → −∞. In 11d supergravity, we study known solutions with superisometry algebra $$ \mathfrak{d} $$ d (2, 1; γ) ⊕ $$ \mathfrak{d} $$ d (2, 1; γ) that are asymptotically locally AdS7×𝕊4. These solutions are holographically dual to the 6d maximally superconformal field theory with 2d superconformal defects invariant under $$ \mathfrak{d} $$ d (2, 1; γ) ⊕ $$ \mathfrak{d} $$ d (2, 1; γ). We show that a limit of these solutions, in which γ → −∞, reproduces another known class of solutions, holographically dual to small$$ \mathcal{N} $$ N = (4, 4) superconformal defects. We then use this limit to generate new small $$ \mathcal{N} $$ N = (4, 4) solutions with finite Ricci scalar, in contrast to the known small $$ \mathcal{N} $$ N = (4, 4) solutions. We then use holography to compute the entanglement entropy of a spherical region centered on these small $$ \mathcal{N} $$ N = (4, 4) defects, which provides a linear combination of defect Weyl anomaly coefficients that characterizes the number of defect-localized degrees of freedom. We also comment on the generalization of our results to include $$ \mathcal{N} $$ N = (0, 4) surface defects through orbifolding.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3