IR/UV mixing, towers of species and swampland conjectures

Author:

Castellano Alberto,Herráez Alvaro,Ibáñez Luis E.

Abstract

Abstract By applying the Covariant Entropy Bound (CEB) to an EFT in a box of size 1/ΛIR one obtains that the UV and IR cut-offs of the EFT are necessarily correlated. We argue that in a theory of Quantum Gravity (QG) one should identify the UV cutoff with the ‘species scale’, and give a general algorithm to calculate it in the case of multiple towers becoming light. One then obtains an upper bound on the characteristic mass scale of the tower in terms of the IR cut-off, given by Mtower$$ {\left({\Lambda}_{\mathrm{IR}}\right)}^{2{\alpha}_D} $$ Λ IR 2 α D in Planck units, with αD = (D − 2 + p)/2p(D − 1), where p depends on the density of states. Identifying the IR cut-off with a (non-vanishing) curvature in AdS one reproduces the statement of the AdS Distance Conjecture (ADC), also giving an explicit lower bound for the α exponent. In particular, we find that the CEB implies α ≥ 1/2 in any dimension if there is a single KK tower, both in AdS and dS vacua. However values α < 1/2 are allowed if the particle tower is multiple or has a string component. We also consider the CKN constraint coming from avoiding gravitational collapse which further requires in general α ≥ 1/D for the lightest tower. We analyse the case of the DGKT-CFI class of Type IIA orientifold models and show it has both particle and string towers below the species scale, so that a careful analysis of how the ADC is defined is needed. We find that this class of models obey but do not saturate the CEB. The UV/IR constraints found apply to both AdS and dS vacua. We comment on possible applications of these ideas to the dS Swampland conjecture as well as to the observed dS phase of the universe.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Holographic phenomenology via overlapping degrees of freedom;Classical and Quantum Gravity;2024-08-28

2. Wormholes in the axiverse, and the species scale;Journal of High Energy Physics;2024-07-25

3. Shedding black hole light on the emergent string conjecture;Journal of High Energy Physics;2024-07-23

4. Minimal black holes and species thermodynamics;Journal of High Energy Physics;2024-06-19

5. Stringy evidence for a universal pattern at infinite distance;Journal of High Energy Physics;2024-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3