Twin Higgs portal dark matter

Author:

Curtin David,Gryba ShayneORCID

Abstract

Abstract Many minimal models of dark matter (DM) or canonical solutions to the hierarchy problem are either excluded or severely constrained by LHC and direct detection null results. In particular, Higgs Portal Dark Matter (HPDM) features a scalar coupling to the Higgs via a quartic interaction, and obtaining the measured relic density via thermal freeze-out gives definite direct detection predictions which are now almost entirely excluded. The Twin Higgs solves the little hierarchy problem without coloured top partners by introducing a twin sector related to the Standard Model (SM) by a discrete symmetry. We generalize HPDM to arbitrary Twin Higgs models and introduce Twin Higgs Portal Dark Matter (THPDM), which features a DM candidate with an SU(4)-invariant quartic coupling to the Twin Higgs scalar sector. Given the size of quadratic corrections to the DM mass, its most motivated scale is near the mass of the radial mode. In that case, DM annihilation proceeds with the full Twin Higgs portal coupling, while direct detection is suppressed by the pNGB nature of the 125 GeV Higgs. For a standard cosmological history, this results in a predicted direct detection signal for THPDM that is orders of magnitude below that of HPDM with very little dependence on the precise details of the twin sector, evading current bounds but predicting possible signals at next generation experiments. In many Twin Higgs models, twin radiation contributions to ∆Neff are suppressed by an asymmetric reheating mechanism. We study this by extending the νMTH and X MTH models to include THPDM and compute the viable parameter space according to the latest CMB bounds. The injected entropy dilutes the DM abundance as well, resulting in additional suppression of direct detection below the neutrino floor.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3