Abstract
Abstract
Celestial amplitudes, obtained by applying Mellin transform and analytic continuation on “ordinary” amplitudes, have interesting properties which may provide useful insights on the underlying theory. Their analytic structures are thus of great interest and need to be better understood. In this paper, we critically examine the analytic structure of celestial amplitudes in a massless low-energy effective field theory. We find that, fixed-order loop contributions, which generate multipoles on the negative β-plane, in general do not provide an accurate description of the analytic structure of celestial amplitudes. By resumming over the leading logarithmic contributions using renormalization group equations (RGEs), we observe much richer analytic structures, which generally contain branch cuts. It is also possible to generate multipoles or shifted single poles if the RGEs satisfy certain relations. Including sub-leading logarithmic contributions is expected to introduce additional corrections to the picture. However, without a new approach, it is difficult to make a general statement since the analytic form of the Mellin transform is challenging to obtain.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献