Swampland distance conjecture, inflation and α-attractors

Author:

Scalisi MarcoORCID,Valenzuela Irene

Abstract

Abstract The Swampland Distance Conjecture (SDC) constraints the dynamics emerging at infinite distances in field space of any effective field theory consistent with quantum gravity. It provides a relation between the cut-off in energies and the field range which, as we show, in the context of inflation it yields a universal upper bound on the inflaton excursion in terms of the tensor-to-scalar ratio, measured at typical CMB scales. In this note, we investigate the interplay between the SDC and the emergent inflationary physics around infinite distances singularities in string theory, with a special look at its significance for the α-attractor scenario of inflation. We show that the conjecture itself suggests that inflation may arise as an infinite distance phenomenon with the asymptotic kinetic structure typical of α-attractors. Furthermore, we argue that a proper string realisation of these cosmological models in Calabi-Yau manifolds should occur around infinite field distance singularities. However, such constructions typically imply that inflation should not take place in the limit where the inflaton kinetic term develops a pole but rather in the opposite regime. Finally, we study the constraints that the SDC poses on α-attractors and show that they still leave considerable room for compatibility with observations.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multiverse outside of the swampland;Physical Review D;2024-09-03

2. Starobinsky inflation in the swampland;Journal of High Energy Physics;2024-07-22

3. Quintessential interpretation of the evolving dark energy in light of DESI observations;Physical Review D;2024-06-24

4. Testing the scalar weak gravity conjecture in no-scale supergravity;Journal of High Energy Physics;2024-05-22

5. Species scale in diverse dimensions;Journal of High Energy Physics;2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3