Probing primordial black holes from a first order phase transition through pulsar timing and gravitational wave signals

Author:

Acuña Jan Tristram,Tseng Po-Yan

Abstract

Abstract In this work, we assess the sensitivity reach of pulsar timing array (PTA) measurements to probe pointlike primordial black holes (PBHs), with an extended mass distribution, which originate from collapsed Fermi balls that are formed through the aggregation of asymmetric U(1) dark fermions trapped within false vacuum bubbles during a dark first order phase transition (FOPT). The PBH formation scenario is mainly characterized by the dark asymmetry, strength of the FOPT, rate of FOPT, and the percolation temperature. Meanwhile, for PBH masses of interest lying within 1010M − 102M, the relevant signal for PTA measurements is the Doppler phase shift in the timing signal, due to the velocity change induced by transiting PBHs on pulsars. Taking the dark asymmetry parameter to be 104 and 105, we find that percolation temperatures within the 0.1 − 10 keV range, FOPT rates above 103 times the Hubble parameter at percolation, and FOPT strengths within 106 − 0.1 can give rise to PBHs that can be probed by an SKA-like PTA observation. On the other hand, the accompanying gravitational wave (GW) signal from the FOPT can be used as a complementary probe, assuming that the peak frequency lies within the 𝒪(1010) − 𝒪(107) Hz range, and the peak GW abundance is above the peak-integrated sensitivity curves associated with pulsar timing observations that search for stochastic GWs. At the fundamental level, a quartic effective potential for a dark scalar field can trigger the FOPT. By performing a parameter scan, we obtained the class of effective potentials that lead to FOPT scenarios that can be probed by SKA through pulsar timing and GW observations.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probing the origin of primordial black holes through novel gravitational wave spectrum;Journal of Cosmology and Astroparticle Physics;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3