Jet rotational metrics

Author:

Romero AlexisORCID,Whiteson DanielORCID

Abstract

Abstract Embedding symmetries in the architectures of deep neural networks can improve classification and network convergence in the context of jet substructure. These results hint at the existence of symmetries in jet energy depositions, such as rotational symmetry, arising from the physical features of the underlying processes. We introduce new jet observables, Jet Rotational Metrics (JRMs), which provide insights into the substructure of jets by comparing them to jets with perfect discrete rotational symmetry. We show that JRMs are formidable jet features, achieving good classification scores when used as inputs to deep neural networks. We also show that when used in combination with other jet observables, like N-subjettiness and EFPs, our features increase classification performance. The results suggest that JRMs may capture information not efficiently captured by the other observables, motivating the design of future jet observables for learning the underlying symmetries in the physical processes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3