Abstract
Abstract
We employ a manifestly covariant formalism to compute the tree-level amputated Green’s function of non-minimally coupled scalar fields in quadratic gravity in a de Sitter background. We study this Green’s function in the adiabatic limit, and construct the classical Newtonian potential. At short distances, the flat-spacetime Yukawa potential is reproduced, while the curvature gives rise to corrections to the potential at large distances. Beyond the Hubble radius, the potential vanishes identically, in agreement with the causal structure of de Sitter spacetime. For sub-Hubble distances, we investigate whether the modifications to the potential reproduce Modified Newtonian Dynamics.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference152 articles.
1. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
2. Supernova Cosmology Project collaboration, Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].
3. Supernova Search Team collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE].
4. J.D. Barrow and D.J. Shaw, The Value of the Cosmological Constant, Gen. Rel. Grav. 43 (2011) 2555 [arXiv:1105.3105] [INSPIRE].
5. J. Martin, Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask), Comptes Rendus Physique 13 (2012) 566 [arXiv:1205.3365] [INSPIRE].