Abstract
Abstract
We present a simple argument which seems to favor, when applied to a large class of strongly-coupled chiral gauge theories, a dynamical-Higgs-phase scenario, characterized by certain bifermion condensates. Flavor symmetric confining vacua described in the infrared by a set of baryonlike massless composite fermions saturating the conventional ’t Hooft anomaly matching equations, appear instead disfavored. Our basic criterion is that it should be possible to write a strong-anomaly effective action, analogous to the one used in QCD to describe the solution of the U(1)A problem in the low-energy effective action, by using the low-energy degrees of freedom in the hypothesized infrared theory. We also comment on some well-known ideas such as the complementarity and the large N planar dominance in the context of these chiral gauge theories. Some striking analogies and contrasts between the massless QCD and chiral gauge theories seem to emerge from this discussion.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献