Integrating by parts at finite density

Author:

Österman JuusoORCID,Schicho PhilippORCID,Vuorinen AleksiORCID

Abstract

Abstract Both nonzero temperature and chemical potentials break the Lorentz symmetry present in vacuum quantum field theory by singling out the rest frame of the heat bath. This leads to complications in the application of thermal perturbation theory, including the appearance of novel infrared divergences in loop integrals and an apparent absence of four-dimensional integration-by-parts (IBP) identities, vital for high-order computations. Here, we propose a new strategy that enables the use of IBP techniques in the evaluation of Feynman integrals, in particular vacuum or bubble diagrams, in the limit of vanishing temperature T but nonzero chemical potentials μ. The central elements of the new setup include a contour representation for the temporal momentum integral, the use of a small but nonzero T as an IR regulator, and the systematic application of both temporal and spatial differential operators in the generation of linear relations among the loop integrals of interest. The relations we derive contain novel inhomogeneous terms featuring differentiated Fermi-Dirac distribution functions, which severely complicate calculations at nonzero temperature, but are shown to reduce to solvable lower-dimensional objects as T tends to zero. Pedagogical example computations are kept at the one- and two-loop levels, but the application of the new method to higher-order calculations is discussed in some detail.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equation of State of Cold Quark Matter to O(αs3lnαs);Physical Review Letters;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3