Holographic QFTs on S2×S2, spontaneous symmetry breaking and Efimov saddle points

Author:

Kiritsis Elias,Nitti Francesco,Préau Edwan

Abstract

Abstract Holographic CFTs and holographic RG flows on space-time manifolds which are d-dimensional products of spheres are investigated. On the gravity side, this corresponds to Einstein-dilaton gravity on an asymptotically AdSd+1 geometry, foliated by a product of spheres. We focus on holographic theories on S2× S2, we show that the only regular five-dimensional bulk geometries have an IR endpoint where one of the sphere shrinks to zero size, while the other remains finite. In the Z2-symmetric limit, where the two spheres have the same UV radii, we show the existence of a infinite discrete set of regular solutions, satisfying an Efimov-like discrete scaling. The Z2-symmetric solution in which both spheres shrink to zero at the endpoint is singular, whereas the solution with lowest free energy is regular and breaks Z2 symmetry spontaneously. We explain this phenomenon analytically by identifying an unstable mode in the bulk around the would-be Z2-symmetric solution. The space of theories have two branches that are connected by a conifold transition in the bulk, which is regular and correspond to a quantum first order transition. Our results also imply that AdS5 does not admit a regular slicing by S2× S2.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Holographic CFTs on AdSd × Sn and conformal defects;Journal of High Energy Physics;2023-10-31

2. Holographic RG flows on Squashed S3;Journal of High Energy Physics;2022-12-28

3. An infinity of black holes;Classical and Quantum Gravity;2022-10-26

4. Revisiting Coleman-de Luccia transitions in the AdS regime using holography;Journal of High Energy Physics;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3