Author:
Kiritsis Elias,Nitti Francesco,Préau Edwan
Abstract
Abstract
Holographic CFTs and holographic RG flows on space-time manifolds which are d-dimensional products of spheres are investigated. On the gravity side, this corresponds to Einstein-dilaton gravity on an asymptotically AdSd+1 geometry, foliated by a product of spheres. We focus on holographic theories on S2× S2, we show that the only regular five-dimensional bulk geometries have an IR endpoint where one of the sphere shrinks to zero size, while the other remains finite. In the Z2-symmetric limit, where the two spheres have the same UV radii, we show the existence of a infinite discrete set of regular solutions, satisfying an Efimov-like discrete scaling. The Z2-symmetric solution in which both spheres shrink to zero at the endpoint is singular, whereas the solution with lowest free energy is regular and breaks Z2 symmetry spontaneously. We explain this phenomenon analytically by identifying an unstable mode in the bulk around the would-be Z2-symmetric solution. The space of theories have two branches that are connected by a conifold transition in the bulk, which is regular and correspond to a quantum first order transition. Our results also imply that AdS5 does not admit a regular slicing by S2× S2.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献