Abstract
Abstract
Effective theories describing black hole exteriors contain many open-system features due to the large number of gapless degrees of freedom that lie beyond reach across the horizon. A simple solvable Caldeira-Leggett type model of a quantum field interacting within a small area with many unmeasured thermal degrees of freedom was recently proposed in ref. [23] to provide a toy model of this kind of dynamics against which more complete black hole calculations might be compared. We here compute the response of a simple Unruh-DeWitt detector (or qubit) interacting with a massless quantum field ϕ coupled to such a hotspot. Our treatment differs from traditional treatments of Unruh-DeWitt detectors by using Open-EFT tools to reliably calculate the qubit’s late-time behaviour. We use these tools to determine the efficiency with which the qubit thermalizes as a function of its proximity to the hotspot. We identify a Markovian regime in which thermalization does occur, though only for qubits closer to the hotspot than a characteristic distance scale set by the ϕ-hotspot coupling. We compute the thermalization time, and find that it varies inversely with the ϕ-qubit coupling strength in the standard way.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference77 articles.
1. LIGO Scientific and Virgo collaborations, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
2. W.D. Goldberger and I.Z. Rothstein, An effective field theory of gravity for extended objects, Phys. Rev. D 73 (2006) 104029 [hep-th/0409156] [INSPIRE].
3. W.D. Goldberger and I.Z. Rothstein, Dissipative effects in the worldline approach to black hole dynamics, Phys. Rev. D 73 (2006) 104030 [hep-th/0511133] [INSPIRE].
4. R.A. Porto, Post-Newtonian corrections to the motion of spinning bodies in NRGR, Phys. Rev. D 73 (2006) 104031 [gr-qc/0511061] [INSPIRE].
5. R.A. Porto, Next to leading order spin-orbit effects in the motion of inspiralling compact binaries, Class. Quant. Grav. 27 (2010) 205001 [arXiv:1005.5730] [INSPIRE].
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献