Alleviating the non-ultralocality of coset σ-models through a generalized Faddeev-Reshetikhin procedure

Author:

Delduc F.,Magro M.,Vicedo B.

Abstract

Abstract The Faddeev-Reshetikhin procedure corresponds to a removal of the non-ultralocality of the classical SU(2) principal chiral model. It is realized by defining another field theory, which has the same Lax pair and equations of motion but a different Poisson structure and Hamiltonian. Following earlier work of M. Semenov-Tian-Shansky and A. Sevostyanov, we show how it is possible to alleviate in a similar way the non-ultralocality of symmetric space σ-models. The equivalence of the equations of motion holds only at the level of the Pohlmeyer reduction of these models, which corresponds to symmetric space sine-Gordon models. This work therefore shows indirectly that symmetric space sine-Gordon models, defined by a gauged Wess-Zumino-Witten action with an integrable potential, have a mild non-ultralocality. The first step needed to construct an integrable discretization of these models is performed by determining the discrete analogue of the Poisson algebra of their Lax matrices.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference60 articles.

1. L. Faddeev and L. Takhtajan, The quantum method of the inverse problem and the Heisenberg XYZ-model, Russ. Math. Surv. 34 (1979) 11.

2. P. Kulish and E. Sklyanin, Quantum inverse scattering method and the Heisenberg ferromagnet, Phys. Lett. A 70 (1979) 461 [INSPIRE].

3. L. Faddeev, E. Sklyanin, and L. Takhtajan, Quantum inverse problem method. I, Theor. Math. Phys. 57 (1980) 688.

4. J.M. Maillet, Kac-Moody algebra and extended Yang-Baxter relations in the O(N ) nonlinear σ-model, Phys. Lett. B 162 (1985) 137 [INSPIRE].

5. J.M. Maillet, New integrable canonical structures in two-dimensional models, Nucl. Phys. B 269 (1986) 54 [INSPIRE].

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3