Abstract
Abstract
We show how a Hall viscosity induced by a magnetic field can be generated in strongly coupled theories with a holographic dual. This is achieved by considering parity-breaking higher derivative terms in the gravity dual. These terms couple the Riemann curvature tensor to the field strength of a gauge field dual to the charge current, and have an analog in the field theory side as a coupling between the “Euler current” and the electromagnetic field. As a concrete example, we study the effect of the new terms in the thermodynamic and transport properties of a strongly coupled magnetized plasma dual to a dyonic black hole in AdS
4. As a new property of the holographic model, we find that for a state that is initially neutral at zero magnetic field, a charge density and non-dissipative Hall transport are present when the magnetic field is turned on. Remarkably, we also observe that the results from the holographic model are consistent with hydrodynamics even at magnetic fields much larger than temperature.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献