Abstract
Abstract
Considering the large q expansion of the Sachdev-Ye-Kitaev (SYK) model in the two-stage limit, we compute the Lanczos coefficients, Krylov complexity, and the higher Krylov cumulants in subleading order, along with the t/q effects. The Krylov complexity naturally describes the “size” of the distribution while the higher cumulants encode richer information. We further consider the double-scaled limit of SYKq at infinite temperature, where q ~ $$ \sqrt{N} $$
N
. In such a limit, we find that the scrambling time shrinks to zero, and the Lanczos coefficients diverge. The growth of Krylov complexity appears to be “hyperfast”, which is previously conjectured to be associated with scrambling in de Sitter space.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献