Abstract
Abstract
We study the effects of gravitationally-driven decoherence on tunneling processes associated with false vacuum decays, such as the Coleman-De Luccia instanton. We compute the thermal graviton-induced decoherence rate for a wave function describing a perfect fluid of nonzero energy density in a finite region. When the effective cosmological constant is positive, the thermal graviton background sourced by a de Sitter horizon provides an unavoidable decoherence effect, which may have important consequences for tunneling processes in cosmological history. We discuss generalizations and consequences of this effect and comment on its observability and applications to black hole physics.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献