Abstract
Abstract
String theory realisations of the QCD axion are often said to belong to the anthropic window where the decay constant is around the GUT scale and the initial misalignment angle has to be tuned close to zero. In this paper we revisit this statement by studying the statistics of axion physics in the string landscape. We take moduli stabilisation properly into account since the stabilisation of the saxions is crucial to determine the physical properties of the corresponding axionic partners. We focus on the model-independent case of closed string axions in type IIB flux compactifications and find that their decay constants and mass spectrum feature a logarithmic, instead of a power-law, distribution. In the regime where the effective field theory is under control, most of these closed string axions are ultra-light axion-like particles, while axions associated to blow-up modes can naturally play the role of the QCD axion. Hence, the number of type IIB flux vacua with a closed string QCD axion with an intermediate scale decay constant and a natural value of the misalignment angle is only logarithmically suppressed. In a recent paper we found that this correlates also with a logarithmic distribution of the supersymmetry breaking scale, providing the intriguing indication that most, if not all, of the phenomenologically interesting quantities in the string landscape might feature a logarithmic distribution.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Observational constraints on early dark energy;International Journal of Modern Physics D;2024-08
2. Field theory axiverse;Physical Review D;2024-06-20
3. String cosmology: From the early universe to today;Physics Reports;2024-04
4. Cosmic birefringence from the Axiverse;Journal of Cosmology and Astroparticle Physics;2023-11-01
5. Testing charge quantization with axion string-induced cosmic birefringence;Journal of Cosmology and Astroparticle Physics;2023-07-01