Dilaton and massive hadrons in a conformal phase

Author:

Del Debbio Luigi,Zwicky Roman

Abstract

Abstract As the number of fermion fields is increased, gauge theories are expected to undergo a transition from a QCD-like phase, characterised by confinement and chiral symmetry breaking, to a conformal phase, where the theory becomes scale-invariant at large distances. In this paper, we discuss some properties of a third phase, where spontaneously broken conformal symmetry is characterised by its Goldstone boson, the dilaton. In this phase, which we refer to as conformal dilaton phase, the massless pole corresponding to the Goldstone boson guarantees that the conformal Ward identities are satisfied in the infrared despite the other hadrons carrying mass. In particular, using renormalisation group arguments in Euclidean space, we show that for massless quarks the trace of the energy momentum tensor vanishes on all physical states as a result of the fixed point. This implies the vanishing of the gluon condensate and suggests that the scale breaking is driven by the quark condensate which has implications for the cosmological constant. In addition form factors obey an exact constraint for every hadron and are thus suitable probes to identify this phase in the context of lattice Monte Carlo studies. For this purpose we examine how the system behaves under explicit symmetry breaking, via quark-mass and finite-volume deformations. The dilaton mass shows hyperscaling under mass deformation, viz. $$ {m}_D=\mathcal{O}\left({m}_q^{1/\left(1+{\gamma}^{\ast}\right)}\right) $$ m D = O m q 1 / 1 + γ . This provides another clean search pattern.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3