Abstract
Abstract
We study four-point functions of arbitrary half-BPS operators in a 4-dimensional $$ \mathcal{N} $$
N
= 2 SCFT with flavour group SO(8) at genus-zero and strong ’t Hooft coupling, corresponding — via AdS/CFT — to the (α′ expansion of the) Veneziano amplitude on an AdS5×S3 background. We adapt a procedure first proposed by Abl, Heslop and Lipstein in the context of AdS5×S5, and postulate the existence of an effective action in terms of an 8-dimensional scalar field valued in the adjoint of the flavour group. The various Kaluza-Klein correlators can then be computed by uplifting the standard AdS/CFT prescription to the full product geometry with AdS bulk-to-boundary propagators and Witten diagrams replaced by suitable AdS5×S3 versions. After elucidating the main features of the procedure, valid at all orders in α′, we show explicit results up to order α′5. The results provide further evidence of a novel relation between AdS×S and flat amplitudes — which made its first appearance in $$ \mathcal{N} $$
N
= 4 SYM — that is perhaps the most natural extension of the well known flat-space limit proposed by Penedones to cases where AdS and S have the same radius.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献