Dissecting polytopes: Landau singularities and asymptotic expansions in 2 → 2 scattering

Author:

Gardi EinanORCID,Herzog FranzORCID,Jones StephenORCID,Ma YaoORCID

Abstract

Abstract Parametric representations of Feynman integrals have a key property: many, frequently all, of the Landau singularities appear as endpoint divergences. This leads to a geometric interpretation of the singularities as faces of Newton polytopes, which facilitates algorithmic evaluation by sector decomposition and asymptotic expansion by the method of regions. Here we identify cases where some singularities appear instead as pinches in parametric space for general kinematics, and we then extend the applicability of sector decomposition and the method of regions algorithms to such integrals, by dissecting the Newton polytope on the singular locus. We focus on 2 → 2 massless scattering, where we show that pinches in parameter space occur starting from three loops in particular nonplanar graphs due to cancellation between terms of opposite sign in the second Symanzik polynomial. While the affected integrals cannot be evaluated by standard sector decomposition, we show how they can be computed by first linearising the graph polynomial and then splitting the integration domain at the singularity, so as to turn it into an endpoint divergence. Furthermore, we demonstrate that obtaining the correct asymptotic expansion of such integrals by the method of regions requires the introduction of new regions, which can be systematically identified as facets of the dissected polytope. In certain instances, these hidden regions exclusively govern the leading power behaviour of the integral. In momentum space, we find that in the on-shell expansion for wide-angle scattering the new regions are characterised by having two or more connected hard subgraphs, while in the Regge limit they are characterised by Glauber modes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3