Abstract
Abstract
We study the capabilities of a muon collider, at 3 and 10 TeV center-of-mass energy, of probing the interactions of the Higgs boson with the muon. We consider all the possible processes involving the direct production of EW bosons (W, Z and H) with up to five particles in the final state. We study these processes both in the HEFT and SMEFT frameworks, assuming that the dominant BSM effects originate from the muon Yukawa sector. Our study shows that a Muon Collider has sensitivity beyond the high-luminosity LHC, especially as it does not rely on the Higgs-decay branching fraction to muons. A 10 TeV muon collider provides a unique sensitivity on muon and (multi-) Higgs interactions, significantly better than the 3 TeV option. Particularly, we find searches based purely on multi-Higgs production to be particularly effective in probing these couplings.
Publisher
Springer Science and Business Media LLC
Reference106 articles.
1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
2. CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
3. Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE].
4. C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP Violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].
5. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].