Abstract
Abstract
We propose an integrable bootstrap framework for the computation of correlation functions for superstrings in AdS3 × S3 × T4 backgrounds supported by an arbitrary mixture or Ramond-Ramond and Neveu-Schwarz-Neveu-Schwarz fluxes. The framework extends the “hexagon tessellation” approach which was originally proposed for AdS5 × S5 and for the first time it demonstrates its applicability to other (less supersymmetric) setups. We work out the hexagon form factor for two-particle states, including its dressing factors which follow from those of the spectral problem, and we show that it satisfies non-trivial consistency conditions. We propose a bootstrap principle, slightly different from that of AdS5 × S5, which allows to extend the form factor to arbitrarily many particles. Finally, we compare its predictions with some correlation functions of protected operators. Possible applications of this construction include the study of wrapping corrections, of higher-point correlation functions, and of non-planar corrections.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献