Abstract
Abstract
Neutrino-neutrino refraction leads to collective flavor evolution that can include fast flavor conversion, an ingredient still missing in numerical simulations of core-collapse supernovae. We provide a theoretical framework for the linear regime of this phenomenon using the language of response theory. In analogy to electromagnetic waves, we introduce a flavor susceptibility as the linear response to an external flavor field. By requiring self-consistency, this approach leads to the usual dispersion relation for growing modes, but differs from the traditional treatment in that it predicts Landau damping of subluminal collective modes. The new dispersion relation has definite analyticity properties and can be expanded for small growth rates. This approach simplifies and intuitively explains Morinaga’s proof of sufficiency for the occurrence of growing modes. We show that weakly growing modes arise as soon as an angular crossing is formed, due to their resonant interaction with individual neutrino modes. For longitudinal plasma waves, a similar resonance causes Landau damping or conversely, the two-stream instability.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Neutrino quantum kinetics in a core-collapse supernova;Journal of Cosmology and Astroparticle Physics;2024-09-01