Author:
Swingle Brian,Van Raamsdonk Mark
Abstract
Abstract
Motivated by traversable wormhole constructions that require large amounts of negative energy, we explore constraints on the amount of negative energy that can be carried by a free Dirac field in a slab-shaped region between two parallel spatial planes. Specifically, we ask what is the minimum possible uniform energy density that can exist at some time, considering all possible states and all possibilities for the physics outside the slab. The vacuum state where we identify the two sides of the slab with antiperiodic boundary conditions gives one possible state with uniform negative energy, but we argue that states with more negative energy exist above 1+1 dimensions. Technically, we reduce the problem to studying a massive Dirac field on an interval in 1+1 dimensions and numerically search for states with uniform energy density in a lattice regulated model. We succeed in finding states with enhanced negative energy (relative to the antiperiodic vacuum) which also appear to have a sensible continuum limit. Our results for the mass-dependence of the minimum uniform energy density in 1+1 dimensions suggest that for a 3+1 dimensional massless Dirac fermion, it is possible to have states with arbitrarily large uniform negative energy density in an arbitrarily wide slab.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献