Magnetic moments of leptons, charged lepton flavor violations and dark matter phenomenology of a minimal radiative Dirac neutrino mass model

Author:

De Bibhabasu,Das Debottam,Mitra Manimala,Sahoo Nirakar

Abstract

Abstract In a simple extension of the standard model (SM), a pair of vector like lepton doublets (L1 and L2) and a SU(2)L scalar doublet (η) have been introduced to help in accommodating the discrepancy in determination of the anomalous magnetic moments of the light leptons, namely, e and μ. Moreover, to make our scenario friendly to a Dirac like neutrino and also for a consistent dark matter phenomenology, we specifically add a singlet scalar (S) and a singlet fermion (ψ) in the set-up. However, the singlet states also induce a meaningful contribution in other charged lepton processes. A discrete symmetry $$ {\mathcal{Z}}_2\times {\mathcal{Z}}_2^{\prime } $$ Z 2 × Z 2 has been imposed under which all the SM particles are even while the new particles may be assumed to have odd charges. In a bottom-up approach, with a minimal particle content, we systematically explore the available parameter space in terms of couplings and masses of the new particles. Here a number of observables associated with the SM leptons have been considered, e.g., masses and mixings of neutrinos, (g − 2) anomalies of e, μ, charged lepton flavor violating (cLFV) observables and the dark matter (DM) phenomenology of a singlet-doublet dark matter. Neutrinos, promoted as the Dirac type states, acquire mass at one loop level after the discrete $$ {\mathcal{Z}}_2^{\prime } $$ Z 2 symmetry gets softly broken, while the unbroken $$ {\mathcal{Z}}_2 $$ Z 2 keeps the dark matter stable. The mixing between the singlet ψ and the doublet vector lepton can be constrained to satisfy the electroweak precision observables and the spin independent (SI) direct detection (DD) cross section of the dark matter. In this analysis, potentially important LHC bounds have also been discussed.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference162 articles.

1. Particle Data Group collaboration, Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

2. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

3. CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

4. ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $$ \sqrt{s} $$ = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

5. ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at $$ \sqrt{s} $$ = 13 TeV collected with the ATLAS experiment, Phys. Rev. D 101 (2020) 012002 [arXiv:1909.02845] [INSPIRE].

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3