Holographic approach of the spinodal instability to criticality

Author:

Attems MaximilianORCID

Abstract

Abstract A smoking gun signature for a first-order phase transition with negative speed of sound squared $$ {c}_s^2 $$ c s 2 is the occurrence of a spinodal instability. In the gauge/gravity duality it corresponds to a Gregory-Laflamme type instability, which can be numerically simulated as the evolution of unstable planar black branes. Making use of holography its dynamics is studied far from and near a critical point with the following results. Near a critical point the interface between cold and hot stable phases, given by its width and surface tension, is found to feature a wider phase separation and a smaller surface tension. Far away from a critical point the formation time of the spinodal instability is reduced. Across softer and harder phase transitions, it is demonstrated that mergers of equilibrated peaks and unstable plateaux lead to the preferred final single phase separated solution. Finally, a new atypical setup with dissipation of a peak into a plateau is discovered. In order to distinguish the inhomogeneous states I propose a new criterium based on the maximum of the transverse pressure at the interface which encodes phase-mixed peaks versus fully phase separated plateaux.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference70 articles.

1. R. A. Janik and R. B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].

2. J. L. Albacete, Y. V. Kovchegov and A. Taliotis, Modeling Heavy Ion Collisions in AdS/CFT, JHEP 07 (2008) 100 [arXiv:0805.2927] [INSPIRE].

3. D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS5, JHEP 08 (2008) 027 [arXiv:0803.3226] [INSPIRE].

4. S. S. Gubser, S. S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [INSPIRE].

5. P. M. Chesler and L. G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spinodal slowing down and scaling in a holographic model;Journal of High Energy Physics;2024-08-13

2. Mechanical stability of homogeneous holographic solids under finite shear strain;Journal of High Energy Physics;2024-05-16

3. Dynamical evolution of spinodal decomposition in holographic superfluids;Journal of High Energy Physics;2024-02-23

4. Quench dynamics in holographic first-order phase transition;Physical Review D;2023-11-20

5. Equation of state for QCD from lattice simulations;Progress in Particle and Nuclear Physics;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3