Author:
Cox Peter,Han Chengcheng,Yanagida Tsutomu T.,Yokozaki Norimi
Abstract
Abstract
We explore the possibility that the muon g − 2 anomaly and the nature of dark matter can be simultaneously explained within the framework of gaugino mediation, focusing on bino-like dark matter where the observed abundance is obtained via co-annihilations. The minimal model with non-universal gaugino masses is excluded by stau vacuum instability, although this constraint can be somewhat relaxed via the addition of a universal soft scalar mass (or B − L gaugino mediation). A more promising alternative is gaugino+Higgs mediation, which significantly raises the soft masses of the third generation sfermions leading to a split spectrum. In this framework, the muon g − 2 can be easily explained and the dark matter abundance obtained through either bino-wino or bino-slepton co-annihilations.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference60 articles.
1. Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev.D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
2. Muon g-2 collaboration, The muon g − 2 experiment at Fermilab, EPJ Web Conf. 137 (2017)08001 [arXiv:1701.02807] [INSPIRE].
3. G. Bhattacharyya, T.T. Yanagida and N. Yokozaki, An extended gauge mediation for muon (g − 2) explanation, Phys. Lett.B 784 (2018) 118 [arXiv:1805.01607] [INSPIRE].
4. M. Chakraborti, U. Chattopadhyay, A. Choudhury, A. Datta and S. Poddar, The electroweak sector of the pMSSM in the light of LHC — 8 TeV and other data, JHEP07 (2014) 019 [arXiv:1404.4841] [INSPIRE].
5. S.P. Das, M. Guchait and D.P. Roy, Testing SUSY models for the muon g − 2 anomaly via chargino-neutralino pair production at the LHC, Phys. Rev.D 90 (2014) 055011 [arXiv:1406.6925] [INSPIRE].
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献