Abstract
Abstract
We study the gravitational edge mode in the $$ \mathcal{N} $$
N
= 1 Jackiw-Teitelboim (JT) supergravity on the disk and its osp(2|1) BF formulation. We revisit the derivation of the finite-temperature Schwarzian action in the conformal gauge of the bosonic JT gravity through wiggling boundary and the frame fluctuation descriptions. Extending our method to $$ \mathcal{N} $$
N
= 1 JT supergravity, we derive the finite-temperature super-Schwarzian action for the edge mode from both the wiggling boundary and the superframe field fluctuation. We emphasize the crucial role of the inversion of the super-Schwarzian derivative in elucidating the relation between the isometry and the OSp(2|1) gauging of the super-Schwarzian action. In osp(2|1) BF formulation, we discuss the asymptotic AdS condition. We employ the Iwasawa-like decomposition of OSp(2|1) group element to derive the super-Schwarzian action at finite temperature. We demonstrate that the OSp(2|1) gauging arises from inherent redundancy in the Iwasawa-like decomposition. We also discuss the path integral measure obtained from the Haar measure of OSp(2|1).
Publisher
Springer Science and Business Media LLC