Boson star normal modes

Author:

Chan James Hung-Hsu,Sibiryakov Sergey,Xue Wei

Abstract

Abstract Boson stars are gravitationally bound objects that arise in ultralight dark matter models and form in the centers of galactic halos or axion miniclusters. We systematically study the excitations of a boson star, taking into account the mixing between positive and negative frequencies introduced by gravity. We show that the spectrum contains zero-energy modes in the monopole and dipole sectors resulting from spontaneous symmetry breaking by the boson star background. We analyze the general properties of the eigenmodes and derive their orthogonality and completeness conditions which have non-standard form due to the positive-negative frequency mixing. The eigenvalue problem is solved numerically for the first few energy levels in different multipole sectors and the results are compared to the solutions of the Schrödinger equation in fixed boson star gravitational potential. The two solutions differ significantly for the lowest modes, but get close for higher levels. We further confirm the normal mode spectrum in 3D wave simulations where we inject perturbations with different multipoles. As an application of the normal mode solutions, we compute the matrix element entering the evaporation rate of a boson star immersed in a hot axion gas. The computation combines the use of exact wavefunctions for the low-lying bound states and of the Schrödinger approximation for the high-energy excitations.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A generic formation mechanism of ultralight dark matter solar halos;Journal of Cosmology and Astroparticle Physics;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3