Abstract
Abstract
In this paper, we apply reinforcement learning to the problem of constructing models in particle physics. As an example environment, we use the space of Froggatt-Nielsen type models for quark masses. Using a basic policy-based algorithm we show that neural networks can be successfully trained to construct Froggatt-Nielsen models which are consistent with the observed quark masses and mixing. The trained policy networks lead from random to phenomenologically acceptable models for over 90% of episodes and after an average episode length of about 20 steps. We also show that the networks are capable of finding models proposed in the literature when starting at nearby configurations.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献