A new Monte Carlo generator for BSM physics in B → K*ℓ+ℓ− decays with an application to lepton non-universality in angular distributions

Author:

Sibidanov AlexeiORCID,Browder Thomas E.ORCID,Dubey ShawnORCID,Kohani ShahabORCID,Mandal RusaORCID,Sandilya SaurabhORCID,Sinha Rahul,Vahsen Sven E.ORCID

Abstract

Abstract Within the widely used EvtGen framework, we have added a new event generator model for B → K*+ with improved standard model (SM) decay amplitudes and possible BSM physics contributions, which are implemented in the operator product expansion in terms of Wilson coefficients. This event generator can then be used to estimate the statistical sensitivity of a simulated experiment to the most general BSM signal resulting from dimension-six operators. We describe the advantages and potential of the newly developed ‘Sibidanov Physics Generator’ in improving the experimental sensitivity of searches for lepton non-universal BSM physics and clarifying signatures. The new generator can properly simulate BSM scenarios, interference between SM and BSM amplitudes, and correlations between different BSM observables as well as acceptance bias. We show that exploiting such correlations substantially improves experimental sensitivity. As a demonstration of the utility of the MC generator, we examine the prospects for improved measurements of lepton non-universality in angular distributions for BK*+ decays from the expected 50 ab1 data set of the Belle II experiment, using a four-dimensional unbinned maximum likelihood fit. We describe promising experimental signatures and correlations between observables. The use of lepton-universality violating ∆-observables significantly reduces uncertainties in the SM expectations due to QCD and resonance effects and is ideally suited for Belle II with the large data sets expected in the next decade. Thanks to the clean experimental environment of an e+e machine, Belle II should be able to probe BSM physics in the Wilson coefficients C7 and $$ {C}_7^{\prime } $$ C 7 , which appear at low q2 in the di-electron channel.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3