Abstract
Abstract
Quantum tasks are quantum computations with inputs and outputs occurring at specified spacetime locations. Considering such tasks in the context of AdS/CFT has led to novel constraints relating bulk geometry and boundary entanglement. In this article we consider tasks where inputs and outputs are encoded into extended spacetime regions, rather than the points previously considered. We show that this leads to stronger constraints than have been derived in the point based setting. In particular we improve the connected wedge theorem, appearing earlier in arXiv:1912.05649, by finding a larger bulk region whose existence implies large boundary correlation. As well, we show how considering extended input and output regions leads to non-trivial statements in Poincaré-AdS2+1, a setting where the point-based connected wedge theorem is always trivial.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献