Abstract
Abstract
The thermal properties of light mesons, including the temperature dependence of their masses (both screening and pole masses) and thermal widths, are studied in a two-flavor (Nf = 2) soft-wall AdS/QCD model. By solving the spatial correlation functions, we extract the screening masses (mscr) from their poles. The screening masses of pseudo-scalar (π) and axial-vector (a1) mesons increase almost monotonously with the increase of temperature. The screening masses of scalar (σ) and vector (ρ) mesons decrease at low temperature and increase at high temperature. The pole masses (mpole) and the thermal widths (Γ) are extracted from the temporal correlation functions and the corresponding spectral functions. The results indicate that the pole masses have local minima at low temperature and increase at high temperature. The thermal widths increase rapidly above the chiral crossover temperature Tcp, indicating the dissociations of mesons at high temperature. Furthermore, the degeneration of the chiral partners (π and σ, ρ and a1) above Tcp is observed from the screening and pole masses, revealing the chiral symmetry restoration at the hadronic spectrum level. Finally, we numerically verify that the spectral functions in the temporal regime are strongly related to the quasi-normal modes with complex frequencies ω0 = mpole− iΓ/2.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference98 articles.
1. R.D. Pisarski and F. Wilczek, Remarks on the Chiral Phase Transition in Chromodynamics, Phys. Rev. D 29 (1984) 338 [INSPIRE].
2. P. de Forcrand and O. Philipsen, The chiral critical line of Nf = 2 + 1 QCD at zero and non-zero baryon density, JHEP 01 (2007) 077 [hep-lat/0607017] [INSPIRE].
3. H.-T. Ding, F. Karsch and S. Mukherjee, Thermodynamics of strong-interaction matter from Lattice QCD, Int. J. Mod. Phys. E 24 (2015) 1530007 [arXiv:1504.05274] [INSPIRE].
4. STAR collaboration, Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].
5. E.V. Shuryak, Physics of the pion liquid, Phys. Rev. D 42 (1990) 1764 [INSPIRE].
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献