Students’ preferences with university teaching practices: analysis of testimonials with artificial intelligence

Author:

Álvarez-Álvarez CarmenORCID,Falcon SamuelORCID

Abstract

AbstractUniversity teaching practices impact student interest, engagement, and academic performance. This paper presents a study that uses artificial intelligence (AI) to examine students’ preferences for university teaching practices. We asked students in various fields open-ended questions about the best teaching practices they had experienced. Due to the large amount of data obtained, we used the AI-based language model Generative Pretrained Transformer-3 (GPT-3) to analyse the responses. With this model, we sorted students’ testimonies into nine theory-based categories regarding teaching practices. After analysing the reliability of the classifications conducted by GPT-3, we found that the agreement between humans was similar to that observed between humans and the AI model, which supported its reliability. Regarding students’ preferences for teaching practices, the results showed that students prefer practices that focus on (1) clarity and (2) interaction and relationships. These results enable the use of AI-based tools that facilitate the analysis of large amounts of information collected through open methods. At the didactic level, students’ preferences and demand for clear teaching practices (in which ideas and activities are stated and shown without ambiguity) that are based on interaction and relationships (between teachers and students and among students themselves) are demonstrable.

Funder

Universidad de Cantabria

Universidad de las Palmas de Gran Canaria

Publisher

Springer Science and Business Media LLC

Subject

Education

Reference56 articles.

1. Alegre, O. M., & Villar, L. M. (2017). Indicadores y control estadístico para el seguimiento y evaluación de preferencias de aprendizaje de estudiantes universitarios. Revista De Educación a Distancia (RED). https://doi.org/10.6018/red/55/2

2. Álvarez-Álvarez, C., Sánchez-Ruiz, L., Sarabia Cobo, C., & Montoya-del Corte, J. (2022). Validación de un cuestionario para la evaluación de la interacción en la enseñanza universitaria. REDU. Revista De Docencia Universitaria, 20(1), 145–160. https://doi.org/10.4995/redu.2022.15918

3. Ambrose, S. A., Bridges, M. W., Dipietro, M., Lovett, M. C., Norman, M. K., & Mayer, R. E. (2010). 7 research-based principles for smart teaching (1st ed.). John Wiley.

4. Aridah, A., Atmowardoyo, H., & Salija, K. (2017). Teacher practices and students’ preferences for written corrective feedback and their implications on writing instruction. International Journal of English Linguistics, 7(1), 112. https://doi.org/10.5539/ijel.v7n1p112

5. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 2020-Decem.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3