Understanding teacher design practices for digital inquiry–based science learning: the case of Go-Lab

Author:

de Jong TonORCID,Gillet Denis,Rodríguez-Triana María Jesús,Hovardas Tasos,Dikke Diana,Doran Rosa,Dziabenko Olga,Koslowsky Jens,Korventausta Miikka,Law Effie,Pedaste Margus,Tasiopoulou Evita,Vidal Gérard,Zacharia Zacharias C.

Abstract

AbstractDesigning and implementing online or digital learning material is a demanding task for teachers. This is even more the case when this material is used for more engaged forms of learning, such as inquiry learning. In this article, we give an informed account of Go-Lab, an ecosystem that supports teachers in creating Inquiry Learning Spaces (ILSs). These ILSs are built around STEM–related online laboratories. Within the Go-Lab ecosystem, teachers can combine these online laboratories with multimedia material and learning apps, which are small applications that support learners in their inquiry learning process. The Go-Lab ecosystem offers teachers ready–made structures, such as a standard inquiry cycle, alternative scenarios or complete ILSs that can be used as they are, but it also allows teachers to configure these structures to create personalized ILSs. For this article, we analyzed data on the design process and structure of 2414 ILSs that were (co)created by teachers and that our usage data suggest have been used in classrooms. Our data show that teachers prefer to start their design from empty templates instead of more domain–related elements, that the makeup of the design team (a single teacher, a group of collaborating teachers, or a mix of teachers and project members) influences key design process characteristics such as time spent designing the ILS and number of actions involved, that the characteristics of the resulting ILSs also depend on the type of design team and that ILSs that are openly shared (i.e., published in a public repository) have different characteristics than those that are kept private.

Funder

H2020 Industrial Leadership

Publisher

Springer Science and Business Media LLC

Subject

Education

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3