The Effect of Various Additions on the Oxidation Behavior of the γ/γ′ Ni-Based Alloy

Author:

Dąbek Jarosław,Prażuch Janusz,Migdalska Monika,Jawańska Monika,Ziąbka Magdalena,Wójcik-Bania Monika,Jedliński JerzyORCID

Abstract

AbstractThe oxidation behavior of four γ/γ′ Ni-based alloys: without additions, and containing: Hf (1.0 wt%), a combination of Hf and Y (0.3 wt% and 0.03 wt%, respectively), and a combination of Hf and Si (1.0 wt% and 1.0 wt%, respectively) was studied in air under isothermal (50 h) and thermal cycling (up to 2225 1-h cycles) conditions. Samples were characterized using SEM, EDX and XRD techniques. The results indicated that all the additions improved the oxidation resistance of the alloy but only in the case of materials containing the (Hf + Y) combination of additions was a long-term effect achieved. Substantial weight losses were observed on the other unmodified and (Hf + Si)-containing materials during thermal cycling after short exposure periods, while on material containing only additions of Hf, they occurred significantly later. Kinetic studies showed the highest oxidation rate in the case of the (Hf + Si)-containing alloys and the fastest initial oxidation, prior to the parabolic law-obeying stage, of alloy with Hf-additions, only. The results indicate the superior effect of simultaneous application of Hf and Y additions at levels not exceeding their solubility limits and that lowering its effectiveness Hf overdoping (1 wt%) cannot be effectively counteracted by the addition of 1% Si.

Funder

Narodowe Centrum Nauki

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3