Abstract
AbstractThe oxidation resistance of novel γ/γ’-strengthened Co-base superalloys is clearly outmatched by their Ni-base counterparts within the high-temperature regime. Therefore, surface modification strategies to foster protective alumina growth seem auspicious. This study elucidates the impact of fluorination and shot-peening on protective alumina formation at 900 °C for a quaternary Co-base model alloy (Co-Al-W-Ta system) which is well known for an exceptionally low inherent oxidation resistance. Time-resolved isothermal gravimetric analysis (TGA) in synthetic air, detailed electron microscopic analysis, and X-ray diffraction (XRD) were used. For polished samples, no pronounced enhancement of oxidation resistance could be obtained by halogenation. However, in case of shot-peened samples (halogen-free), an increased tendency for alumina formation is found compared to polished surfaces. The very early stages of oxidation were identified to be especially crucial with respect to sustainable protective scale growth. Most noteworthy is the observation of a strong synergistic effect derived by a combination of halogenation and shot-peening, leading to significantly increased oxidation resistance.
Funder
Deutsche Forschungsgemeinschaft
Friedrich-Alexander-Universität Erlangen-Nürnberg
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Metals and Alloys,Inorganic Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献