Performance Comparison Between Isothermal Hot Corrosion And In Situ Cyclic Hot Corrosion of Nickel-Based Superalloys

Author:

Syed Adnan. U.ORCID,Martinez Fabian Duarte,Roberts Tracey,Encinas-Oropesa Adriana,Morar Nicolau I.,Grohne Marlene,Frommherz Martin,Nicholls John R.,Gray Simon

Abstract

AbstractAlthough a lot of work has been done to understand both major mechanisms of hot corrosion, namely type I (high-temperature hot corrosion) and type II (low temperature hot corrosion), there is very little information available on more representative cyclic performance in these regimes. This work addresses this by assessing the performance of isothermal (type I and type II) hot corrosion tests against combined (short and long) cyclic corrosion tests. Single-crystal alloy PWA 1484 and directionally solidified alloy MAR-M247 were assessed in all test regimes. Pre- and post-exposure dimensional metrology was used to quantify the corrosion damage and characterised using SEM/EDX. This paper highlights that the results of short cycle test conditions are more damaging compared to long cycle and standard isothermal type I and II test conditions. The cast nickel-based alloy MAR-M247 was found to be a better performer compared to PWA 1484 single-crystal alloy.

Funder

German Federal Ministry of Economics and MTU Aero Engines AG

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3