Discontinuities in Oxidation Kinetics: A New Model and its Application to Cr–Si-Base Alloys

Author:

Ulrich Anke S.ORCID,Glatzel Uwe,Galetz Mathias C.

Abstract

AbstractSome alloys such as many Cr-based systems show mass gain discontinuities during thermogravimetric measurements which strongly affect the oxidation kinetics. The behaviour cannot be described by the current models available in the literature. Thus, a novel $$k_\mathrm{para}$$ k para $$k_\mathrm{lin}$$ k lin -P-model was developed to describe oxidation kinetics during the isothermal exposure of materials which show such behaviour. Beside the parabolic rate constant $$k_\mathrm{para}$$ k para and the linear mass loss constant $$k_\mathrm{lin}$$ k lin , the P-value and $$f_P$$ f P are introduced to take into account spontaneous rapid mass gains due to local oxide scale failure. The parameter P serves as a measure for the mass gain due to discontinuous events and $$f_P$$ f P is the frequency of such events. The both parameters can be related to oxide scale detachment and growth stresses. The application of the model is demonstrated for the oxidation of Cr–Si-based alloys in synthetic air at $$1200^{\circ }\hbox {C}$$ 1200 C for 100 h. For these alloys, the origin of the mass gain discontinuities is discussed and the meaning of P and $$f_P$$ f P is explained in more detail. Using this newly developed model, an insight into growth and nitridation resistance of oxide scales as well as scale adhesion is gained.

Funder

Deutsche Forschungsgemeinschaft

DECHEMA-Forschungsinstitut

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Inorganic Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3